177 research outputs found

    HIV-1 Viral Loads Are Not Elevated in Individuals Co-infected With Schistosoma spp. After Adjustment for Duration of HIV-1 Infection

    Get PDF
    Studies of the role of Schistosoma co-infections on plasma HIV-1 RNA (HIV-1 viral load) have yielded incongruent results. The role of duration of HIV-1 infection on the link between Schistosoma and HIV-1 viral load has not been previously investigated. We aimed to assess the impact of HIV-1/Schistosoma co-infections on viral load in Antiretroviral Treatment (ART)-naïve HIV-1 infected people taking into account the duration of HIV-1 infection. We describe 79 HIV-infected outpatients greater than 18 years of age who had never used ART in Mwanza, Tanzania. Schistosomiasis testing was done by urine and stool microscopy and by serum Schistosoma circulating anodic antigen (CAA) testing. Schistosoma positivity was defined as having either test positive. We conducted univariable and multivariable linear regressions to assess the relationship between Schistosoma infection and the log10 of viral load. Duration of HIV infection was calculated using the first measured CD4+ T-cell (CD4) count as a function of normal CD4 count decay per calendar year in drug naïve individuals. An active Schistosoma infection was demonstrated in 46.8% of the patients. The median log10 viral load was 4.5[3.4–4.9] log10 copies/mL in Schistosoma uninfected patients and 4.3[3.7–4.6] log10 copies/mL in Schistosoma infected patients. Schistosoma co-infection was negatively associated with the log10 of viral load after adjustment for Schistosoma intensity as measured by CAA, CD4 counts at time of testing, and duration of HIV-1 infection (β = −0.7[−1.3;−0.1], p = 0.022). Schistosoma co-infection was not associated with viral load in univariable analysis. There was also no interaction between Schistosoma positivity and duration of HIV-1 infection. Our study is the first, to our knowledge, to report adjustment for duration of HIV-1 infection when analyzing the relationship between HIV-1 viral load and Schistosoma spp. We found that time infected with HIV-1 has a major effect on the relationship between HIV-1 viral load and Schistosoma infection and may be a critical explanatory factor in the disparate findings of studies on HIV-1 viral load and schistosomiasis. The log10 viral load difference found indicates that Schistosoma co-infection does not make HIV progression worse, and could possibly lead to slower HIV disease progression

    Circulating Fatty Acids and Prostate Cancer Risk: Individual Participant Meta-Analysis of Prospective Studies

    Get PDF
    Background: Individual studies have suggested that some circulating fatty acids are associated with prostate cancer risk, but have not been large enough to provide precise estimates of associations, particularly by stage and grade of disease. Methods: Principal investigators of prospective studies on circulating fatty acids and prostate cancer were invited to collaborate. Investigators provided individual participant data on circulating fatty acids (weight percent) and other characteristics of prostate cancer cases and controls. Prostate cancer risk by study-specific fifths of 14 fatty acids was estimated using multivariable-adjusted conditional logistic regression. All statistical tests were two-sided. Results: Five thousand and ninety-eight case patients and 6649 control patients from seven studies with an average follow-up of 5.1 (SD = 3.3) years were included. Stearic acid (18:0) was inversely associated with total prostate cancer (odds ratio [OR] Q5 vs Q1 = 0.88, 95% confidence interval [CI] = 0.78 to 1.00, P trend = .043). Prostate cancer risk was, respectively, 14% and 16% greater in the highest fifth of eicosapentaenoic acid (20:5n-3) (OR = 1.14, 95% CI = 1.01 to 1.29, P trend = .001) and docosapentaenoic acid (22:5n-3) (OR = 1.16, 95% CI = 1.02 to 1.33, P trend = .003), but in each case there was heterogeneity between studies (P = .022 and P < .001, respectively). There was heterogeneity in the association between docosapentaenoic acid and prostate cancer by grade of disease (P = .006); the association was statistically significant for low-grade disease but not high-grade disease. The remaining 11 fatty acids were not statistically associated with total prostate cancer risk. Conclusion: There was no strong evidence that circulating fatty acids are important predictors of prostate cancer risk. It is not clear whether the modest associations of stearic, eicosapentaenoic, and docosapentaenoic acid are causal

    Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial

    Get PDF
    Background Major protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs. Methods Samples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain. Results We cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure. Conclusions Here we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic determinants of protease inhibitor failure in those who fail without traditional resistance mutations whilst PI use is being scaled up globally

    Insulin Resistance in Chileans of European and Indigenous Descent: Evidence for an Ethnicity x Environment Interaction

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban), adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMA(IR)) and underwent assessment of physical activity/sedentary behaviour (using accelerometry), cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant "ethnicity x environment" interaction for HOMA(IR) (Mean +/- SD; Rural Mapuche: 1.65 +/- 2.03, Urban Mapuche: 4.90 +/- 3.05, Rural European: 0.82 +/- 0.61, Urban European: 1.55 +/- 1.34, p((interaction)) = 0.0003), such that the effect of urbanisation on HOMA(IR) was greater in Mapuches than Europeans. In addition, there were significant interactions (all p&lt;0.004) with ethnicity for effects of adiposity, sedentary time and physical activity on HOMA(IR), with greater effects seen in Mapuches compared to Europeans, an observation that persisted after adjustment for potential confounders.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance.&lt;/p&gt

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value &lt; 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p &lt; 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
    corecore